Course	Title	M	MATHEMATICS-IV B. Tech. ECE III Sem				1			
Course	Code	Category	Ho	ours/We	ek	Credit s	Maxim	um Mar	ks	
15213	301	BS	L	Т	Р	С	Continuou s Internal Assessmen t	End Exam s	Total	
	Mid Exam Duration: 1Hr		3	1		3	30	70	100	
Mid Exa	am Dur	ration: 1Hr 30	Min				End Exam Duration: 3Hr			
Course	Objecti	bjectives:								
•]	Гo train	o train the students in getting a thorough understanding of the fundamentals of special								
f	unction	s.			-	-		_		
•]	To prepa	are students for	lifelong	learning	g and su	ccessful ca	reers using an	alytic fund	ction,	
C	conform	al mapping, con	nplex in	tegratio	n and re	sidues	U		,	
Course	Outcon	nes: On success	ful com	pletion of	of this co	ourse, the	students will b	e able to		
CO 1	Define	e Beta and gam	ma func	tions and	d solve o	lefinite int	egrals, Define	analytic f	unction,	
	singul	arities, poles an	d residu	es.				,		
CO 2	Solve	Bessel and Leg	endre's	equation	ns in terr	ns of poly	nomials.			
CO 3	Determine the differentiation of complex functions used in engineering problems.									
CO 4	Discus	Discuss the various special transformations and integration of Complex functions.								
CO 5	Analy	ze real definite	integral	s in defi	nite regi	ons.	•			
	2		U		0					

<u>UNIT I</u>

Special Functions: Beta function - Gamma function - Relation between Beta and Gamma functions and their properties. – Evaluation of improper integrals – Power series method.

<u>UNIT II</u>

Bessel functions – Solution of Bessel equation - Recurrence formulae for Jn(x) - Generating function for Jn(x) - Jacobi series – Orthogonality of Bessel functions - Legendre polynomials – Solution of Legendre's equation – Legendre Polynomials - Rodrigue's formula -Generating function for Pn(x) - Recurrence formulae for Pn(x) - Orthogonality of Legendre polynomials.

UNIT III

Functions of a complex variable – Limit – Continuity -Differentiability - Analytic function – Properties – Cauchy – Riemann equations in cartesian and polar coordinates - Harmonic and Conjugate harmonic functions. - Construction of analytic function using Milne - Thomson method. Applications to flow problems.

UNIT IV

Conformal Mapping: Some standard transforms – translation, rotation, magnification, inversion and reflection. Bilinear transformation –invariant points. Special conformal transformations w = ez, z2, sinz and cosz. Complex integration: Line integral - Evaluation along a path and by indefinite integration - Cauchy's theorem - Cauchy's integral formula - Generalized integral formula.

<u>UNIT V</u>

Singular point – Isolated singular point – Simple pole, Pole of order m - Essential singularity. Residues: Evaluation of residues by formula. Cauchy's residue theorem - Evaluation of the

real definite integrals of the type (i) Integration around the unit circle $\int f(\cos q, \sin q) dq p$ (ii) integration around a small semi circle $\int f(x) dx$.

Text Books:

- 1. Dr. B.S Grewal, Higher Engineering Mathematics, Khanna Publishers-42 edition.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, Willey Publications, 9th edition- 2013.
- 3. Greenberg Michael D, Advanced Engineering Mathematics, Cengage Publishers.
- 4. Neil Opeter V, Advanced Engineering Mathematics.

- 1. B.V.Ramana, Higher Engineering Mathematics, Mc.Graw Hill Education (India) Private Limited.
- 2. N. Bali, M Goyal, Advanced Engineering Mathematics by Firewall Media 7th edition.
- 3. E. Rukmangadachari & E. Keshava Reddy, Engineering Mathematics, Volume III, Pearson Publisher.
- 4. Greenspan Harvey P Benney David J Turner James E, Calculus an introduction to applied Mathematics.

Course	Title	ELECT	ROMA	GNETI	C FIEL	DS	B. Tech. ECE III Sem				
Course	Code	Category	Но	ours/We	ek	Credit s	Maximum Marks				
15043	302	PN	L	Т	Р	С	Continuou s Internal Assessmen t		Total		
			3	1		3	30	70	100		
Mid Exa	am Dur	ration: 1Hr 30	Min				End Exam	Duration	n: 3Hrs		
Course	Objecti	ives:									
• C e	Get four lectrom	ndational educat agnetic waves.	tion in s	tatic elec	ctromag	netic fields	s, and time var	ying			
• (Get the	knowledge of N	Maxwell	's equat	ions.						
•	Analyze	e and solve the	problem	s of elec	tric and	magnetic	fields that vary	with thre	e		
d	imensio	onal spatial co-	ordinate	s as well	as with	time					
Course	Outcon	nes: On success	sful com	pletion	of this co	ourse, the	students will b	e able to			
CO 1	Use v	ector algebra, a	nd vecto	or calcul	us.						
CO 2	Calcu	late the Electro	magneti	c fields	due to v	arious sou	ls sources				
CO 3	Under	Understand the various currents, dielectrics and capacitors									
CO 4	Under	stand theorems	relating	g electro	magneti	c fields an	d potentials				
CO 5	Apply	Boundary con	ditions t	o obtain	fields in	n various c	conditions				

<u>UNIT-I</u>

Electrostatic Fields: Vector Algebra, Co-ordinate systems, Vector Calculus, Coulomb's law, Electric field intensity, Field due to different charge distributions, Line charge, Surface charge and volume charge distributions. Electric flux and Flux density, Gauss law and its applications.

UNIT-II

Energy and Potential: Divergence theorem. Maxwell's equations for electrostatics in integral and point forms. Energy expended in moving a point charge in an electric field, Line integral, Potential difference and potential, Potential field of a point charge and system of charges, Potential gradient, Dipole, Energy density in the electrostatic field.

UNIT-III

Conductors, Dielectrics and Capacitances: Current and current density, Convection and conduction currents, Continuity of current, metallic conductors, nature of dielectric materials, Capacitance-Parallel plate, Coaxial and Spherical Capacitors, Poisson's and Laplace equations-examples.

UNIT-IV

Magneto static Fields: Biot-savart's law, Ampere's law and applications, Magnetic flux density, Maxwell's two equations for magneto static fields, magnetic scalar and vector potentials, Forces due to Magnetic fields, Ampere's force law, inductances and magnetic energy, illustrative problems.

UNIT-V

Maxwell's Equations: Faraday's law and transformer emf, Inconsistency of ampere's law and displacement current density, Maxwell's equations in different final forms and word statements, conditions at boundary surface Dielectric-Dielectric and Dielectric-conductor interfaces, illustrative problems.

Text Books:

1. Hayt W.H., Engineering Electromagnetics, 7th Edition, TMH, 2006.

2. Matthew N.O. Sadiku, Elements of Electromagnetics, 4th Edition, Oxford University Press, 2008.

3. Jordan and Balmain, Electromagnetic Waves and Radiating Systems, 2nd Edition, Pearson Ed. 2000.

4. Joseph A. Edminister, "Electromagnetics", Schaum's Outline, McGraw-Hill, 2nd edition, 1994.

Reference Books:

1. G.S.N. Raju, "Electromagnetic Field Theory and Transmission Lines", 1st Edition, Pearson Ed. 2013.

2. John D. Kraus, "Electromagnetics", 3rd Edition, Mc Graw-Hill, 1988.

3. Nanapeneni Narayana Rao, "Elements of Engineering Electromagnetics", 6th Edition, Pearson Ed. 2009

4. Clayton Paul, Syed Nasar and Keith Whites, "Introduction to Electromagnetic Fields", McGraw-Hill Education.

Course Title	ELECI	FRONI CIR	C DEVI CUITS	ND	B. Tech. ECE III Sem				
Course Code	Category	Н	ours/We	eek	Credit s	Maximum Marks			
1504303	PJ	L	Т	Р	С	Continuou s Internal Assessmen t	End Exam s	Total	
		3	1		3	30	70	100	
Mid Exam Dur	Mid Exam Duration: 1Hr 30 Min						Duratio	n: 3Hrs	
Course Objectives:									

- To understand electronic devices, including diodes, bipolar junction transistors and FET.
- To understand basic circuits of the electronic devices.

Course	Outcomes: On successful completion of this course, the students will be able to							
CO 1	CO 1 Describe the operation of various Diodes, transistors and their applications							
CO 2	Analyze rectifiers with and without filters							
CO 3	Compare BJT and FET circuits under different configurations							
CO 4	Illustrate the Biasing of BJT and FET.							
CO 5	Use various special semiconductor devices indifferent applications.							

UNIT-I

Semiconductors: Intrinsic and extrinsic semiconductors, mobility and conductivity, Fermi level and carrier concentration of semi-conductors, Drift and diffusion currents, continuity equation, Hall effect. PN junction diode: Construction and operation of PN Junction diode, V-I Characteristics, Temperature Dependence, Static and dynamic resistance, Transition and Diffusion Capacitance, Zener diode and photo diode.

<u>UNIT-II</u>

Rectifiers: Half-wave, Full-wave and Bridge Rectifiers with and without Filters, Ripple Factor and Regulation Characteristics.

UNIT-III

Bipolar Junction Transistors: NPN and PNP junction Transistors, Current components, CB, CE and CC Configurations and their Input and Output Characteristics, Comparison of CE, CC and CB, Saturation, Cutoff and Active Region, α , β and γ Parameters and the relation between them.

UNIT-IV

Field Effect Transistor (FET): JFET and its characteristics, Pinch off Voltage, Drain Saturation Current, MOSFET–Enhancement and Depletion Modes, Small signal models of FET, Biasing of FETs.

UNIT-V

Transistor Biasing Circuits: Various Biasing Circuits, Thermal Runaway, Stabilization and compensation, Thermal Stability, Transistor as an Amplifier. Special Semiconductor Devices: Tunnel Diode, LED, Schottky Barrier Diode, Varactor Diode, Photo transistor, Uni-Junction transistor (UJT), SCR, LDR.

Text Books:

 Jacob Millman and C. Halkias, "Electronic devices and circuits", McGraw Hill.
 Jacob Millman and C. Halkias, "Integrated Electronics Analog Digital Circuits", McGraw Hill.

3. R.L. Boylestad, "Electronic Devices and Circuit Theory", Prentice Hall Publications.

4. N.Salivahanan, and N.Suresh Kumar, "Electronic Devices and Circuits", TMH ,3rd Edition, 2012.

Reference Books:

1. David A. Bell, "Electronic Devices and Circuits", Oxford University press, 5th Edition, 2008.

2. K. Lal Kishore, "Electronic Devices and Circuits", BSP. 2nd Edition, 2005

3. S. Sedra and K.C. Smith, "Microelectronic Circuits", Oxford University Press, 5th Edition

4. D. Neamen , D. Biswas "Semiconductor Physics and Devices," McGraw-Hill Education

Course '	Title	SIC	SIGNALS & SYSTEMSB. Tech. ECE III Sem										
Course (Code	Category	Но	Hours/Week Credit Maximum Marks									
1504304 PJ L T P C						С	Continuou s Internal Assessmen t	End Exam s	Total				
		3 1 3 30 70 100											
Mid Exa	Exam Duration: 1Hr 30 Min End Exam Duration: 3Hr												
Course (Objecti	ves:											
• T	he obje	ctive of the cou	urse is to	analyze	e the res	ponse of li	near, time-inva	ariant dyn	amic				
sy	ystems	to standard inp	ut signal	s.		-		-					
• T	o Study	y the different s	tandard	signals t	that can	be applied	l to the various	systems f	for the				
es	stimatic	on of their perfo	ormance					•					
Course (Outcon	nes: On success	sful com	pletion of	of this c	ourse, the	students will b	e able to					
CO 1	Identif	y the various si	ignals ar	nd opera	tions on	signals							
CO 2	Describe the spectral characteristics of signals.												
CO 3	Illustr	Illustrate signal sampling and its reconstruction											
CO 4	Apply	convolution an	d correl	ation in	signal p	rocessing.							
CO 5	Analy	ze continuous a	and disci	ete time	e system	s.							

UNIT-I

Introduction: Definition and Classification of Signals, Elementary signals, Basic operations on signals. Fourier series representation of periodic signals: Analogy between vectors and signals, Orthogonal signal space, Signal approximation using orthogonal functions, Mean square error, Closed or complete set of orthogonal functions, Orthogonality in complex functions. Representation of function by a set of mutually orthogonal functions, Dirichlet's conditions, Trigonometric Fourier series and Exponential Fourier series, Spectrum and its significance, Amplitude and Phase spectra.

<u>UNIT-II</u>

Fourier transforms: Fourier transform (FT), Fourier transform of standard signals, properties of Fourier transforms, Fourier transforms involving impulse function, Fourier transform of periodic signals, UNIT-III Discrete Time Signals: Sampling of continuous time signals, Sampling theorem, Reconstruction of signal from its samples, effect of under sampling – Aliasing. Unit impulse, step, ramp, and exponential sequences, Periodicity of Discrete-time signals, Operations on Discrete-time signals.

UNIT III

Signal transmission through LTI systems: Systems, Classification of Systems, Linear time invariant (LTI) system, Transmission of signals through LTI systems, Transfer function of a LTI system. Distortion less transmission through LTI system, Causality & Stability.

UNIT-IV

Discrete Time Systems: Definition, classification, Linear Shift Invariant(LSI) system, Stability, Causality, Linear constant coefficient difference equation, Impulse response, Discrete time Fourier transform, Properties, Transfer function, System analysis using DTFT. Convolution and correlation of signals and sequences: Graphical method of

convolution, auto correlation and Cross correlation of functions, properties of correlation function, Energy density spectrum, Power density spectrum, Relation between convolution and correlation, Applications of convolution and correlation.

UNIT-V

Laplace Transform: Definition, ROC, Properties, Inverse Laplace transform, The S-plane and BIBO stability, Transfer functions, System response to standard signals.

Text Books:

- 1. Simon Haykin, "Communication Systems", 2nd Edition, Wiley-Eastern, 2003.
- **2.** Oppenheim AV and Willisky, "Signals and Systems", 2nd Edition, Pearson Ed,1997.
- **3.** B.P. Lathi, "Principles of Linear systems and signals," Oxford Univ. Press, Second Edition International version, 2009.
- 4. Tarun Kumar Rawat, "Signals and Systems", Oxford University Press.

- 1. Simon Haykin, Van Veen, and Wiley, "Signals & Systems", 2nd Edition, 2003.
- 2. Luis F. Chaparro, "Signals and Systems using MATLAB," Academic Press, 2011.
- **3.** P. Ramesh Babu, R. Ananda Natarajan, "Signals and Systems", 2nd edition, SciTech Publications,2006.
- **4.** John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing, Principles, Algorithms, and Applications, 4 th Edition, PHI,2007.

Course	Title	NE	TWOR	B. Tech. EC	ECE III Sem					
Course	Code	CategoryHours/WeekCredit sMaximum Marks								
1502305		PN	L	Т	Р	С	Continuou s Internal Assessmen t	End Exam s	Total	
			3	1		3	30	70	100	
Mid Exa	am Dur	ration: 1Hr 30	Min				End Exam	Duratio	n: 3Hrs	
Course	Objecti	ives:								
• 1	This cou	rse introduces t	he conc	epts of c	circuit an	nalysis wh	ich includes the	ree phase	circuits,	
ti	ransient	analysis of D.	C. and A	.C excit	ations, v	various Ne	twork function	is and syn	thesis	
Course	Outcon	nes: On success	ful com	pletion of	of this co	ourse, the	students will be	e able to		
CO 1	Unde	rstand the basi	c concep	ots of ma	agnetic c	circuits, res	sonance and ne	etwork fur	nctions	
CO 2	Solve DC and AC circuits by using various theorems.									
CO 3	Analyze RL, RC and RLC for DC and AC transient response									
CO 4	Analy	Analyze two port networks for Z, Y, ABCD, H parameters								
	And it	ts relationship b	etween	them						

<u>UNIT – I</u>

Network Theorems: Superposition Theorem, Thevinin's Theorem, Norton's Theorem, Compensation Theorem, Maximum Power Transfer theorem, Reciprocity theorem, Millmen's theorem, Tellegen's theorems for D.C and Sinusoidal Excitations.

<u>UNIT – II</u>

Three Phase Circuits: Advantages of Three phase system, Phase sequence, balanced and unbalanced systems – magnitude & phasor relationship between line and phase voltages and currents in balanced Y and Δ circuits. Analysis of balanced Three phase circuits with Y and Δ connected loads –Analysis of unbalanced loads- Neutral displacement method, Y- Δ conversion and loop current method. Measurement of Three phase power by two wattmeter method, Measurement of Three phase reactive power by single wattmeter method.

<u>UNIT – III</u>

DC Transient Analysis: Determination of Initial Conditions – Transient response of R-L, R-C and R-L-C circuits for DC–Solution method using differential equation and Laplace transforms.

<u>UNIT – IV</u>

AC Transient Analysis: Transient response of R-L, R-C and R-L-C series circuits for sinusoidal excitations – Solution method using differential equation and Laplace transforms. Analysis of Electrical Circuits non-sinusoidal periodic waveforms.

UNIT - V

Two Port Parameters: One port and two port networks, driving point and transfer functions of Networks. Open circuit impedance & short circuit admittance parameters, hybrid & inverse hybrid parameters, transmission & inverse transmission parameters, Interrelationships between parameter sets – Series, parallel & cascade connection of two ports –

condition for symmetry & reciprocity of two port Networks in terms of different parameters – Terminated two port Networks.

Text Books:

- 1. Theory and Problems of Electrical Circuits Joseph A. Edminister Schaum Series, 1st Edition TMH.
- 2. Circuit Theory -A.Chakrabarti, DhanapatRai & Co publications.
- 3. Electrical Circuits N.Sreenivasulu, Reem publications.
- 4. Network Analysis Van Valkenburg 3rd edition, PHI.

- 1. Circuits & Networks A. Sudhakar, Shayammohan. S. Pillai, 4th Edition TMH.
- 2. Networks and Systems D. Roy Chowdari New Age International
- 3. Network Analysis with applications Stanely Pearson education 4th edition.
- 4. Network Analysis by G.K.Mittal, Khanna Publishers.

Course	Title	ELEC	CTRICA	AL MAC	CHINES	5	B. Tech. EC	E III Sem	l
Course	Code	Category	Но	ours/We	ek	Credit s	Maxim	um Mar	ks
1512306		PJ	L	Т	Р	С	Continuou s Internal Assessmen t	End Exam s	Total
3 1 3 30						30	70	100	
Mid Exa	am Dur	ation: 1Hr 30	Min				End Exam	Duratio	n: 3Hrs
Course	Objecti	ves:							
	• To l	earn concepts o	f Electri	ical Mac	hines.				
	• To t	inderstand para	meters o	of DC M	achine a	and single	phase motors		
Course	Outcon	nes: On success	ful com	pletion of	of this co	ourse, the	students will be	e able to	
CO 1	Unders	stand the concept	ts of Elec	trical Ma	achines.				
CO 2	Perform OC and SC tests on transformers								
CO 3	Model the stator and rotor designing aspects of induction motors.								
CO 4	Analy	Analyze the parameters of DC Machine							
CO 5	Classi	fy the single ph	ase mot	ors					

<u>UNIT-I</u>

DC Machines: Principle of operation of DC generators-EMF equation –types of generators – magnetisation and load characteristics-applications –DC motor –torque equation –types and characteristics -3 point starter –efficiency calculation-speed control.

<u>UNIT II</u>

Transformers: Single phase transformers-principle of operation –types-constructional features-EMF equationphasor diagram on no load and load-equivalent circuit –loss and efficiency-regulation –OC and SC tests – predetermination of efficiency and regulation.

<u>UNIT III</u>

Three Phase Induction Motors: Three phase induction motor-constructional featuresprinciple of operation –types-slip-torque characteristics-efficiency calculations-starting methods.

UNIT IV

Synchronous Machines: Synchronous generators-constructional features-types-EMF equation distribution and coil span factor-regulation by synchronous impedance method-principle of operation of synchronous motor-method of starting.

<u>UNIT V</u>

Single Phase Motors: single phase induction motors-constructional features-shaded pole motors-capacitor motor-AC servo motor-AC tachometers-Synchros-stepper motor-characteristics and applications.

Text Books:

1. S.K.Battacharya, Electrical Machines- -TMH

2. Edward Hughes, Electrical Technology- 7th edition-Pearson Education.

3. B. L. Theraja & A. K. Theraja, A Text Book of Electrical Technology, S. Chand & Company Ltd.

4. J. B. Gupta, Electrical Machines, Kataria Publications.

Reference Books:

1. Electrical Machines by I.J. Nagarath & D. P. Kothari, TMH, 7th Edition

2. S. Bimbra, . Electrical Machines, Khanna Publishers

3. I.J. Nagarath & D.P. Kothari, Electrical Machines, TMH, 7th Edition 2005

4. R.K. Rajput, DC Machines & Transformers, Laxmi Publications

Course Ti	itle	ELECTR	ELECTRICAL ENGINEERING LAB B. Tech. ECE III Sem								
Course Co	ode	Category	Hours/Week Credit s			Maxim	Maximum Marks				
1512307	7	PN	L	Т	Р	С	Continuou s Internal Assessmen t	End Exam s	Total		
									100		
							End Exam	Duratio	n: 3Hrs		
Course Ob	ojecti	ives:									
• To	give	practical know	ledge of	Networ	k Theor	ems and T	wo port Netwo	rks.			
• To sing	• To make students perform various tests and learn about DC motors, generators, and single phase transformers.										
Course Ou	se Outcomes: On successful completion of this course, the students will be able to										
CO 1 \	Verify the characteristics of Network Theorems and Twoport Networks										
CO 2 F	Performansf	rm various tests ormers.	and lea	rn about	t DC mo	tors, gener	rators and sing	le phase			

CO 3 Design single phase transformers.

Part-A:

1. Verification of KVL and KCL.

2. Series and parallel Resonance – Resonant frequency, Bandwidth and Q –factor determination for RLC network.

3. Two port network parameters – Determination of Z and Y parameters and analytical verification.

4. Two port network parameters – Determination of ABCD and h-Parameters and analytical verification. 5. Verification of Superposition and Reciprocity theorems.

6. Verification of maximum power transfer theorem. Verification on DC, verification on AC with Resistive and Reactive loads.

7. Experimental determination of Thevenin's and Norton's equivalent circuits and verification by direct test.

Part-B:

1. Magnetization characteristics of D.C. Shunt generator. Determination of critical field resistance and critical speed.

2. Swinburne's Test on DC shunt machine (Predetermination of efficiency of a given DC machine working as motor and generator)

3. Brake test on DC shunt motor. Determination of performance characteristics.

4. Speed control of DC Shunt Motor

5. OC & SC tests on Single – Phase transformer (Predetermination of efficiency and regulation at given power factors and determination of equivalent circuit).

6. Load test on single phase transformer.

7. Determination of voltage regulation of an alternator by synchronous impedance method.

Note: Any 10 of the above experiment are to be conducted, at least 5 from each part.

Course Title	ELECTRO	NIC DE I	VICES AB	& CIR	B. Tech. ECE III S		E III Sen	1
Course Code	Category	Ho	ours/We	ek	Credit s	Maximum Marks		
1504308	PJ	L	Т	Р	С	Continuou s Internal Assessmen t	End Exam s	Total
				3	2	50	50	100
			End Exam Duration: 3Hrs					

Course Objectives:

• To know the different devices- their characteristics and applications

• To study the design and analysis of amplifier circuits

Course	Outcomes: On successful completion of this course, the students will be able to
CO 1	Verify the V-I Characteristics of various diodes.
CO 2	Examine the load characteristics of rectifiers.
CO 3	Varify the Input and Output characteristics of various transistors

CO 3 Verify the Input and Output characteristics of various transistors.

Electronic Workshop Practice (in 3 lab sessions):

1. Identification, Specifications, Testing of R, L, C Components (Colour Codes), Potentiometers, Switches (SPDT, DPDT, and DIP), Coils, Gang Condensers, Relays, Bread Boards, PCB s

2. Identification, Specifications and Testing of Active Devices, Diodes, BJTs, Low power JFETs, MOSFETs, Power Transistors, LEDs, LCDs, SCR, UJT.

3. Study and operation of Millimetres (Analog and Digital), Function Generator, Regulated Power Supplies

4. Study and Operation of CRO.

List of Experiments: (Any ten from the following)

- 1. Forward and Reverse bias characteristics of PN Junction diode
- 2. Zener diode characteristics and Zener diode as Voltage Regulator.
- 3. Input and Output characteristics of Transistor in CB Configuration.
- 4. Input and Output characteristics of Transistor in CE Configuration.
- 5. Half Wave Rectifier With and without filter.
- 6. Full wave Rectifier With and without filter.
- 7. Bridge rectifier with and without filter.
- 8. FET characteristics
- 9. VI characteristics of LED
- 10. Characteristics of Photo diode
- 11. Characteristics of Photo transistor
- 12. SCR Characteristics.
- 13. UJT Characteristics.
- 14. LDR Characteristics.

Note: Change at least two experiments every year.

Equipment required for Laboratories:

- 1. Regulated Power supplies (RPS) 0-30v.
- 2. CROs 0-20M Hz.

3. Function Generators - 0-1 M Hz.

- 4. Multimeters
- 5. Decade Resistance Boxes/Rheostats -
- 6. Decade Capacitance Boxes
- 7. Micro Ammeters (Analog or Digital)- 0-20 µA, 0-50µA, 0-100µA, 0-200µA.
- 8. Voltmeters (Analog or Digital) 0-50V, 0-100V, 0-250V.

9. Electronic Components - Resistors, Capacitors, BJTs, LCDs, SCRs, UJTs, FETs, LEDs, LDRs, MOSFETs, Diodes (Ge & Si type), Germanium and Silicon transistors (NPN & PNP type)

Course	Title	ANALO	DG COI	MMUN	ICATIO	DNS	B. Tech. EC	E IV Sem	i .	
Course	Code	Category	Hours/Week Credit		Maxim	ks				
15044	401	PJ	L	Т	Р	С	Continuou s Internal AssessmenEnd Exam s		Total	
			3	1		3	30 70 100			
Mid Exa	am Dur	ration: 1Hr 30	Min				End Exam Duration: 3Hrs			
Course	Objecti	ives:								
•	To anal	lvze various tra	nsmitter	and rec	eiver fu	nctions and	1 circuits			
•	To anal	lyze different m	nodulatic	on and d	emodul	ation techn	iques			
•							iiques.	1.1		
Course	Outcon	nes: On success	stul com	pletion of	of this co	ourse, the	students will be	e able to		
CO 1	Under	rstand different	blocks i	in comm	unicatio	on system a	and how noise	affects		
	comm	unication.								
CO 2	Distin	guish between	differen	t amplit	ude mod	lulation an	d angle modula	ation sche	mes.	
CO 3	Constr applica	ruct AM, FM Tations.	ransmitt	ers and o	different	t radio rece	eiver circuits for various			
CO 4	Compa	Compare various Pulse modulation and demodulation techniques.								
CO 5	Verify	sampling theor	rem							

UNIT-I

Introduction to communication systems: Modulation and its needs and types, Fundamental physical limitations, Electromagnetic Spectrum and Area of Applications. **Amplitude modulation:** Hilbert Transform and its properties, Pre-envelope and band pass signals, Full AM, DSBSC and SSB, Generation and detection methods, VSB, frequency translation, FDM, Nonlinear distortion and Inter Modulation.

UNIT-II

Angle modulation: Phase and frequency modulation, NBFM, WBFM, Multi-tone FM, Transmission band width of FM, direct and indirect generations of FM, Demodulation methods, Nonlinear effects, FM versus AM.

UNIT-III

Block diagram study of radio broadcast AM and FM transmitters: Super heterodyne receivers, choice of IF, AGC, Tracking-characteristics of radio receivers, FM stereo.

UNIT-IV

Noise: External and internal sources of noise, Noise calculations, Noise equivalent resistant, Noise figure, Noise temperature, Effect of noise in AM and FM modulation system, FM threshold effect, Pre-emphasis and de-emphasis.

UNIT-V

Sampling: Review of sampling theorem, Practical aspects of sampling; pulses of finite duration, Flat top sampling.

Pulse Analog Modulation: PAM generation and detection, PDM and PPM, Generation and detection, Spectra, Synchronization.

Text books:

- 1. Simon Haykin, "Communication Systems", Wileyestern, 1978, 4th edition.
- 2. B.P. Lathi "Modern Digital and Analog communication system", Oxford University Press, 2nd Edition, 1996.
- 3. A. Bruce Carlson "Communication systems", Mc Graw Hill, ISE, 5thedition.
- 4. Simon Haykin, Micheal Mohar, "An Introduction to Analog and Digital Communications", John Wiley, 2007.

- 1. Dennis Roddy and John Coolen, "Electronic communications" Prentice-Hall of India Private Limited, 1981.
- 2. Kennedy and Davis, "Electronic communication systems", 4thEdition, Mc Graw International edition, 1992.
- 3. Taub and Schilling, "Principles of communication Systems", Mc Grace Hill, ISE, 1971.
- 4. Shanmugam K Sam, "Digital and Analog Communication Systems", John Wiely and sons.

Course	Title	SWITCH	NG TH DE	EORY SIGN	AND L	OGIC	B. Tech. ECE IV Sem					
Course	Code	Category	Но	ours/We	ek	Credit s	Maximum Marks					
15044	102	PJ	L	Т	Р	С	Continuou s Internal Assessmen t	Continuou s Internal AssessmenEnd Exam sTotal Total of 100t3070100				
			3	1		3	3 30 70					
Mid Exa	ım Dur	ration: 1Hr 30	Min				End Exam	Duratio	n: 3Hrs			
Course (Objecti Systen an intr	ives: ns, logic gates, oduction to the	Combin fundam	ational a entals of	nd sequ f Numbe	ential circ er	uits To provide	e the stude	ents with			
Course	se Outcomes: On successful completion of this course, the students will be able to											
CO 1	Use number systems and binary codes.											
CO 2	Understand the postulates, theorems and properties of Boolean algebra.											
CO 3	Corre	late the Boolea	n expres	sion and	l their co	orrespondi	ng logic diagra	ım.				

CO 4 Design Combinational & sequential logic circuits.

CO 5 Solve Switching functions using Programmable Logic Devices.

<u>UNIT I</u>

Number Systems & Codes: Overview of number systems –complement representation of negative numbers- binary arithmetic, binary codes-error detecting & error correcting codes –Hamming codes.

<u>UNIT II</u>

Boolean Algebra and Minimization of Switching Functions: Fundamental postulates of Boolean Algebra - Basic theorems and properties –Canonical and Standard forms- Minimal SOP and POS forms ,Algebraic simplification digital logic gates –universal gates-Multilevel NAND/NOR realizations. The map method, tabulation method.

UNIT III

Combinational Logic Design: Design using conventional logic gates, Encoder, Decoder, Multiplexer, De- Multiplexer, Realization of switching functions using multiplexer, Parity bit generator, Code-converters, Hazards and hazard free realizations.

<u>UNIT IV</u>

Programmable Logic Devices: Basic PLD's-ROM, PROM, PLA, and PLD, Realization of Switching functions using PLD's.

<u>UNIT V</u>

Sequential Circuits: Synchronous and Asynchronous sequential circuits, Flip-flops-Triggering and excitation tables, Flip flop conversions, shift registers, Design of Synchronous and Asynchronous counters, Ring and Johnson counters. Serial Binary adder, Sequence detector.

Text Books:

- 1. ZVI Kohavi, Switching & Finite Automata theory –, TMH, 2ndEdition.
- 2. Morris Mano, "Digital Design", PHI, 3rd Edition, 2006.
- 3. A. Anand Kumar, "Switching Theory & Logic Design", 2008, PHI.
- 4. John M. Yarbrough, "Digital Logic Applications and Design", Thomson Publications.

- 1. R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition, 2009.
- 2. W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2nd edition, 2006.
- 3. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989
- 4. William I. Fletcher, "An Engineering Approach to Digital Design", PHI.

Course Title		ELECTR	ONIC C	CIRCUI	B. Tech. ECE IV Sem				
Course Code		Category	Но	ours/We	ek	Credit s	Maximum Marks		
1504403		PJ	L	Т	Р	С	Continuou s Internal Assessmen t	End Exam s	Total
			3	1		3	30	70	100
Mid Exam Duration: 1Hr 30 MinEnd Exam Duration: 3Hrs									
Course	Course Objectives:								
 To provide knowledge about single stage amplifiers, multi-stage amplifiers, feedback amplifiers, large signal amplifiers, differential, tuned amplifiers and FET amplifiers and their analysis. To provide knowledge about working and design of oscillators. 									
Course	Outcon	nes: On success	ful com	pletion	of this c	ourse. the	students will b	e able to	
CO 1	Apply	the h – parame	ter mod	el to am	plifiers of	circuit des	ign.		
CO 2	Descr	ibe the various	multista	ige ampl	ifiers us	ing BJT a	nd FET.		
CO 3	Desig	n negative feed	back an	plifier c	circuits a	and oscilla	tors.		
CO 4	Analyz	ze and design p	ower an	nplifier c	circuits.				

CO 5 Interpret the tuned amplifiers and tuned cascaded networks functionality.

<u>UNIT-I</u>

General Amplifiers: Concept of amplifier, Voltage gain, current gain, input and output resistances, conversion efficiency, frequency response, Bandwidth, Distortion, classification of amplifiers, amplifier circuits using BJT and FET and their biasing schemes.

<u>UNIT-II</u>

BJT Amplifiers: Hybrid model (h- parameters), small signal analysis of a single stage BJT Amplifiers, Comparison of CE, CB and CC amplifiers, Approximate model analysis, Effects of coupling and bypass capacitors on low frequency response, Hybrid- Π model at high frequencies, parameters f_{α} , f_{β} and f_{T} .

<u>UNIT-III</u>

FET Amplifiers: Small signal model, Analysis of CS, CD and CG amplifiers, High frequency response.

Multistage Amplifiers: Types of coupling, choice of amplifier configurations, overall gain and band width of n-stage amplifier, Analysis of two-stage RC coupled amplifier, Darlington and Bootstrap circuits.

UNIT-IV

Feedback Amplifiers: Feedback concept, classification, Effects of negative feedback on gain, stability, noise, distortion, bandwidth, input and output resistances. Different types of feedback circuits.

Sinusoidal oscillators: Barkhausen criterion, RC phase shift, Wein bridge, Hartley, Colpitts and Crystal Oscillators.

UNIT-V

Tuned amplifiers: Introduction, Q-factor, small signal tuned amplifiers, effect of cascading single tuned amplifiers on bandwidth, effect of cascading double tuned amplifiers on bandwidth, stagger tuned amplifier , stability of tuned amplifiers.

Power amplifiers: Classification of power amplifiers, efficiency of class-A, class-B, class-C and class- D power amplifiers, complementary symmetry push pull power amplifier.

Text Books:

- 1. Jacob Millman, Christos C Halkias, "Integrated Electronics", McGrawHill.
- 2. Allen Mottershead, "Electronic Devices and Circuits" Prentice -Hall ofIndia
- 3. S. Salivahanan– "ElectronicDevicesandCircuits"–TMH,3rdEdition,2012.
- 4. K.Lal Kishore, Electronic Devices and Circuits-, BSP, 2nd Edition, 2005.

- 1. Robert L. Boylestad, Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education, 9th Edition, 2008.
- 2. Donald A Neamen, "Electronic Circuits Analysis and Design", Tata McGraw-Hill, 3rd Edition,2009.
- 3. Sedra, Kenneth, Smith, "Microelectric circuits", Oxford University Press, 5th Edition,2011.
- 4. J. Millman and A. Grabel, Microelectronics, 2nd edition, McGraw Hill, 1988

Course	Title	PULSE	AND D	IGITAL		UITS	B. Tech. ECE IV Sem		
Course Code		Category	Hours/Week			Credit s	Maximum Marks		
1504404		PJ	L	Т	Р	С	Continuou s Internal Assessmen t	End Exam s	Total
			3	1		3	30	70	100
Mid Exa	Mid Exam Duration: 1Hr 30 MinEnd Exam Duration: 3Hrs								
 Course Objectives: To provide the fundamentals of linear and nonlinear wave shaping and multivibrators. 									
Course	Outcon	nes: On succes	sful com	pletion	of this c	ourse, the	students will b	e able to	
CO 1	CO 1 Demonstrate knowledge in constructing and analyzing linear and non-linear wave shaping circuits								
CO 2	Use 1	Logic gates and	Sampli	ng gates	to deve	lop digital	systems		
CO 3	Desig	n and Develop	Switchi	ng Circu	its and l	Multivibra	tor Circuits		
CO 4	Apply	v synchronizatio	on and fi	requency	y divisio	n concepts	s in advanced a	pplication	ns
CO 5	Distir	iguish among v	arious lo	ogic fam	ilies and	l Select the	e appropriate o	ne for an	

<u>UNIT I</u>

application

Linear Wave shaping: High pass, low pass RC circuits, their response for sinusoidal, step, pulse, square and ramp inputs. High Pass RC network as Differentiator, Low Pass RC network as integrator, attenuators and its applications as a CRO probe, illustrative Problems

<u>UNIT II</u>

Non-linear Wave shaping: Diode clippers, Transistor clippers, clipping at two independent levels, Comparators, applications of voltage comparators, clamping operation, clamping circuits taking source and Diode resistances into account, Clamping circuit theorem, practical clamping circuits, effect of diode characteristics on clamping voltage, Synchronized Clamping.

<u>UNIT III</u>

Multivibrators: Transistor as a switch, Transistor-Switching Times, Analysis and Design of Bistable, Monostable, Astable Multivibrators and their triggering circuits. Schmitt trigger circuit using BJT.

<u>UNIT IV</u>

Time Base Generators: General features of a time base signal, methods of generating time base waveform, Miller and Bootstrap time base generators – basic principles, Transistor miller time base generator, Transistor Bootstrap time base generator, Transistor Current time base generators.

Synchronization and Frequency Division: Pulse Synchronization of relaxation Devices, Frequency division in sweep circuit, Stability of relaxation Devices, Astable relaxation circuits, Monostable relaxation circuits, Synchronization of a sweep circuit with symmetrical signals.

<u>UNIT V</u>

Sampling Gates: Basic operating principles of sampling gates, Unidirectional and Bidirectional sampling gates, Four Diode Sampling Gate, Reduction of pedestal in gate circuits, Six Diode Gate, Applications of Sampling Gates.

Digital Logic Circuits: AND, OR, & NOT gates using Diodes, and Transistors, Analysis of DCTL, RTL, DTL, TTL, ECL, IIL, MOS, CMOS Logic Families, and comparison between the logic families.

Text Books:

- 1. J. Millman, H. Taub and Mothiki S. Prakash Rao, "Pulse, Digital and Switching Waveforms", TMH , 2nd Edition,2008.
- 2. Brinton B. Mitchell, "Semiconductor Pulse Circuits with Experiments" Thomson Learning (1June 1970).
- 3. David A. Bell, "Solid State Pulse Circuits", PHI, 4th Edition,2002.
- 4. Sonde, B. S., "Introduction to system Design using IC's," Wiley, 2/e,1994.

- 1. Millman, J and Grabel A., Microelectronics, 2 nd. Edition, Mc GrawHill.
- 2. A. Anand Kumar, "Pulse and Digital Circuits", PHI,2005.
- 3. Ronald J. Tocci, "Fundamentals of Pulse and Digital Circuits", 3rd Edition, 2008
- 4. J.Millman, H.Taub and Mothiki S. Prakash Rao, "Pulse, Digital and Switching Waveforms", TMH, 2nd Edition, 2008.

Course Title	ELECTR TRA	ROMA ANSM	GNET ISSIO	B.Tech. ECE I	V Sem			
Course Code	Category	Ho	urs/W	eek	Credits	Maximum Marks		
1504405	PJ	L	Т	Р	С	Continuous Internal Assessment	End Exam s	Tota l
		3	1		3	30	70	100
Mid Exam Duration: 1Hr 30 Min					End Exam Duration: 3Hrs			

Course Objectives:

- To give the basic education in time varying electromagnetic waves.
- To develope analytical skills for understanding propagation of electromagnetic waves in different media.
- To understand the concepts of transmission lines & their applications.
- To provide basic knowledge about guided waves and wave guides.
- To know about cavity resonators.

Course Outcomes: On successful completion of this course, the students will be able to					
CO 1	Understand Wave propagation in loss less and conducting media				
CO 2	Analyze Polarization, Reflection and Refraction of plane waves				
CO 3	Calculate different constants of Transmission line				
CO 4	Design single and double stub matching				
CO 5	Understand the propagation of EM waves in waveguides				

<u>UNIT-I</u>

Waves in Lossless and Lossy Media: Wave equations for conducting and perfect dielectric media, Uniform plane waves-Definition, All relations between E&H, Sinusoidal variations, Wave propagation in loss less and conducting media, conductors& dielectrics-characterization, wave propagation in good conductors and good dielectrics.

UNIT-II

Polarization, Reflection, and Refraction: Polarization – Linear, Circular, and Elliptical polarizations. Reflection and Refraction of plane waves-Normal and Oblique incidences for both perfect conductors and dielectrics, Brewster angle, Critical angle and total internal reflection, Surface impedance, pointing vector and pointing theorem-applications, power losses in a plane conductor, illustrative problems.

<u>UNIT-III</u>

Transmission Lines: Types, parameters, Transmission line equations, Primary & Secondary constants, Expression for characteristic impedance, Propagation constant, Phase and group velocities, infinite line concepts, Loss less and low loss characterization, Distortion- condition for Distortion less and minimum attenuation, Loading- Types of loading, illustrative problems.

<u>UNIT-IV</u>

Impedance Matching: Input impedance relations, SC and OC lines, Reflection coefficient, VSWR, UHF lines as circuit elements, impedance transformations, and Smith chart, single and double stub matching, illustrative problems.

UNIT-V

Wave Guides: Microwave frequencies advantages and applications, Waves between parallel conducting planes, TE and TM waves, Rectangular wave guides, Excitation of wave guides. Wave equations, rectangular and circular waveguides for TE and TM modes, Cutoff frequency and wave length, Group and phase velocity, Wave impedance, Guide attenuation, Rectangular and cylindrical resonators, Q of the cavity resonators.

Text Books:

1. Matthew N.O. Sadiku, "Elements of Electromagnetic," Oxford Univ. Press, 4th ed., 2008.

2. William H. Hayt Jr. and John A. Buck, "Engineering Electromagnetic," TMH, 7th ed., 2006.

3. E.C. Jordan and K.G. Balmain, "Electromagnetic Waves and Radiating Systems "PHI, 2nd Ed., 2000.

4. G.S.N. Raju, "Electromagnetic Field Theory and Transmission Lines", Pearson India, 2006.

Reference Books:

1. John D. Krauss, "Electromagnetics", McGraw-Hill publications, 3rd ed., 1988.

2. John D. Ryder, "Networks, Lines, and Fields," PHI publications, Second Edition, 2012.

3. Schaum's out – lines, "Electromagnetics,", Tata McGraw-Hill publications, Second Edition, 2006.

4. Clayton Paul, Syed Nasar and Keith Whites, "Introduction to Electromagnetic Fields", McGraw-Hill Education.

Course	Title	PROBABII STOCHAS'	LITY I FIC PI	B.Tech. ECE IV Sem				
Cou Co	rse de Catego	Category Hours/Week Credits Maximum N			Hours/Week Credits Maxim		Maximum Marks	
1504	406 PJ	L	Т	Р	С	Continuous Internal Assessment	End Exam s	Tota l
		3	1		3	30	70	100
Mid Exam Duration: 1Hr 30 MinEnd Exam Duration: 3Hrs								rs
 Course Objectives: The Objective of this course is to provide the students with knowledge about the random variable, random processs To model the random processes in the communication system such as receiver performance, interference, thermal noise, and multipath phenomenon 								
Course	Outcomes: On s	successful co	omplet:	$\frac{1}{1}$	his course, the	e students will be	able to	
	Describe variou	is distributio	ons of r	andom	variable			
CO_2	Perform Opera	itions on Sin	gle ran	dom va	ariables			
CO 3	Understand oper	rations and t	heoren	ns on n	ultiple randor	n Variables		
CO 4	Compute PSD of	of Random p	rocess					
CO 5	Analyze Linear	Systems wi	th Ran	dom In	puts			

UNIT-I

Probability: Axioms, Joint and conditional probability, Bayes' theorem, Bernoulli trials.

Random Variable: Concept, Distribution functions, Density functions, Conditional density functions.

<u>UNIT -II</u>

Operations on Single random variables: Expectation, Conditional expected value, Moments, Chebyshev, Markov's and Chernoff's inequalities, Characteristics and moment generating functions, Transformation of continuous, discrete random variable.

<u>UNIT-III</u>

Multiple Random Variables: Vector random variables, Joint distribution / Density functions, Conditional density / Distribution functions, Statistical independence, pdf and cdf for sum of random variables, Central limits theorem, Operations on multiple random variables, Expected value of function of random variables, Joint characteristic function, Joint by Gaussian random variables, Transformations of multiple random variables.

<u>UNIT – IV</u>

Random Processes : Concept, Stationarity, Independence, Time averages, Ergodicity, Correlation functions and its properties, Gaussian, Poisson, and Markov processes, Power

spectral density and its properties, Relation between power spectral density and autocorrelation, Cross power spectral density and its properties, Power spectrum for discrete time processes and sequences, Definition of white and colored noise.

<u>UNIT-V</u>

Linear Systems with Random Inputs: Random signal response of linear system, System evaluation using random noise, Spectral characteristics of system response, Noise bandwidth, Band pass, Band limited, and Narrow band processes, Properties of band limited processes.

Text Books:

- 1. P.Z. Peebles Jr., "Probability Random Variables and Random Signal Principles", Tata McGraw-Hill, 4th Edition,2001.
- 2. A. Papoulis and S. Unnikrishna Pillai, "Probability Random Variables and Stochastic Processes", 4th Edition, PHI,2007
- 3. J. Launon and V. Chandrasekhar, "Introduction to Probability Random Processes", McGraw-Hill,1997.
- 4. Hwei P. Hsu, Ph.D., "Theory and Problems of Probability, Random Variables, and Random Processes", Schaum's Outline Series, McGraw Hill, New York, 1968.

- 1. S.P. Eugene Xavier, "Statistical Theory of Communication", New Age Publications, 2003.
- 2. B.P. Lathi, "Signals, Systems & Communications", B.S. Publications, 2003.
- 3. G.R. Babu and K. Pushpa, "Probability Theory and Stochastic Processes", Premier Publishing House.
- 4. D. G. Childer, "Probability and Random Processes", McGraw Hill, 1997.

Course Title	ELECTRO	ONIC	CIRCU	B.Tech. ECE IV Sem					
Course Code	Category Hours/Week Credits					Maximum Marks			
1504407	PJ	L	Т	Р	С	Continuous Internal Assessment	End Exa ms	Total	
				3	2	50	50	100	
Mid Exam Dur	ation: 1Hr 30) Min	-		End	Exam Durati	on: 3Hrs	5	
 Course Objectives: Working of different feedback amplifiers with frequency responses. Working of different Oscillators using transistors. 									
Course Outcon	nes: On succes	ssful co	ompleti	on of t	his course, the stud	dents will be ab	ole to		

	······································
CO 1	Design and analyze the basic operations of amplifier using BJT and FET
CO 2	Evaluate two stage amplifiers
CO 3	Realize the given performance using negative feedback amplifiers
CO 4	Design and test oscillator circuits using BJT
CO 5	Design the different power amplifier circuits

Design and Simulation in Simulation Laboratory using any Simulation Software: I Testing in the Hardware Laboratory (Minimum of 6Experiments):

- 1. Common Emitter Amplifier
- 2. Common SourceAmplifier
- 3. Common collectorAmplifier
- 4. A Two Stage RC CoupledAmplifier.
- 5. Current shunt and Voltage Series FeedbackAmplifier
- 6. Hartleyoscillator
- 7. Wien Bridge Oscillator using Transistors
- 8. RC Phase Shift Oscillator using Transistors
- 9. Class A Power Amplifier (Transformerless)
- 10. Class B Complementary SymmetryAmplifier
- 11. High Frequency Common base (BJT) / Common gate (JFET)Amplifier.

II Testing in the Software Laboratory (6 Experiments)

- 1. Common Emitter Amplifier
- 2. Common SourceAmplifier
- 3. Common collectorAmplifier
- 4. A Two Stage RC CoupledAmplifier.
- 5. Current shunt and Voltage Series FeedbackAmplifier
- 6. Hartleyoscillator
- 7. Wien Bridge Oscillator using Transistors
- 8. RC Phase Shift Oscillator using Transistors
- 9. Class A Power Amplifier (Transformerless)
- 10. Class B Complementary SymmetryAmplifier
- 11. High Frequency Common base (BJT) / Common gate (JFET)Amplifier.

Note: Change at least two experiments every year.

Course Title	PULSE &	DIGI	B.Tech. ECE IV Sem					
Course Code	Category	ory Hours/Week C				Maximum Marks		
1504408	PJ	L	Т	Р	С	Continuou s Internal Assessment	End Exams	Tota l
				3	2	50	50	100
Mid Exam Duration: 1Hr 30 Min End Exam Duration: 3Hrs						rs		
Course Objectives:To know how to design the digital circuits and Multivibrators								
Course Outcon	nes: On successf	ul com	pletion	of this	s course, the stu	idents will be a	ble to	
CO 1	Design and anal	lyze lin	lear wa	ve shaj	ping and non-li	near wave shap	oing circuit	s.
CO 2	Design sequent	ial and	l combi	nation	al circuits using	g logic gates an	d flip-flop	s.
CO 3	Understand the	switch	ning ch	aracter	istics of transis	tors.		
CO 4	Design multivib	orators	and tin	ne base	generators.			
CO 5	Design and anal	lyze lin	lear wa	ve sha	ping and non-li	near wave shap	oing circuit	s.

List of Experiments: (Any twelve experiments)

- 1. Linear wave shaping.
- 2. Non Linear wave shaping –Clippers.
- 3. Non Linear wave shaping –Clampers.
- 4. Transistor as a switch.
- 5. Study of Logic Gates, Adders & Subtractors.
- 6. Study of Flip-Flops.
- 7. Synchronous and Asynchronous Counters.
- 8. Shift registers.
- 9. Sampling Gates.
- 10. Astable Multivibrator.
- 11. Monostable Multivibrator.
- 12. Bistable Multivibrator.
- 13. Schmitt Trigger.
- 14. UJT Relaxation Oscillator.
- 15. Bootstrap sweep circuit.
- 16. Constant Current Sweep Generator using BJT.